Nonparametric density estimation for intentionally corrupted functional data

نویسندگان

چکیده

We consider statistical models where functional data are artificially contaminated by independent Wiener processes in order to satisfy privacy constraints. show that the corrupted observations have a density which determines distribution of original random variables, masked near origin, uniquely, and we construct nonparametric estimator density. derive an upper bound for its mean integrated squared error has polynomial convergence rate, establish asymptotic lower on minimax rates is close rate attained our estimator. Our requires choice basis two smoothing parameters. propose data-driven ways choosing them prove quality not significantly affected empirical parameter selection. examine numerical performance method via simulated examples.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonparametric Functional Data Analysis through Bayesian Density Estimation

In many modern experimental settings, observations are obtained in the form of functions, and interest focuses on inferences on a collection of such functions. Some examples are conductivitytemperature-depth (CTD) data in oceanography, dose-response models in epidemiology and time-course microarray experiments in biology and medicine. In this paper we propose a hierarchical model that allows us...

متن کامل

Functional data clustering via piecewise constant nonparametric density estimation

In this paper, we present a novel way of analyzing and summarizing a collection of curves, based on piecewise constant density estimation. The curves are partitioned into clusters, and the dimensions of the curves points are discretized into intervals. The cross-product of these univariate partitions forms a data grid of cells, which represents a nonparametric estimator of the joint density of ...

متن کامل

Nonparametric Regression Estimation under Kernel Polynomial Model for Unstructured Data

The nonparametric estimation(NE) of kernel polynomial regression (KPR) model is a powerful tool to visually depict the effect of covariates on response variable, when there exist unstructured and heterogeneous data. In this paper we introduce KPR model that is the mixture of nonparametric regression models with bootstrap algorithm, which is considered in a heterogeneous and unstructured framewo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistica Sinica

سال: 2021

ISSN: ['1017-0405', '1996-8507']

DOI: https://doi.org/10.5705/ss.202018.0484